SAFETY

General

You must understand and follow all applicable local, state and federal regulations and standards for building construction, electrical design, fire and safety, and must check with local authorities to determine applicable permitting requirements before attempting to install or maintain PANDA BIFACIAL modules.

Rooftop PANDA BIFACIAL systems should only be installed on houses that have been formally analyzed for structural integrity, and confirmed to be capable of handling the additional load of PANDA BIFACIAL system components, including PANDA BIFACIAL modules, by a certified building specialist or engineer.

For your safety, do not attempt to work on a rooftop until safety precautions have been identified and taken, including without limitation fall protection measures, ladders or stairways, and personal protective equipment.

For your safety, do not install or handle PANDA BIFACIAL modules under adverse conditions, including without limitation strong or gusty winds, and wet or frosted roof surfaces.

PANDA BIFACIAL modules are photovoltaic products made of tempered glass, encapsulant, ribbon, cells and junction boxes. Figure 1 is an illustration of the PANDA BIFACIAL module components.

Electrical

PANDA BIFACIAL modules can produce current and voltage when exposed to light of any intensity. Electrical current increases with higher light intensity. DC voltage of 30 Volts or higher is potentially lethal. Contacting live circuitry of a PV system operating under light can result in lethal electric shock.

De-energize PANDA BIFACIAL modules by removing them entirely from light or by covering their front and rear surfaces with an opaque material. Regard the safety regulations for live electrical equipment when working with modules that are exposed to any light. Use insulated tools and do not wear metallic jewelry while working with PANDA BIFACIAL modules.

In order to avoid arcing and electrical shock, do not disconnect electrical connections under load. Faulty connections can also result in arcing and electrical shock. Keep connectors dry and clean, and ensure that they are in...
Transport and Handling

Yingli Solar PANDA BIFACIAL modules must be transported in the supplied packaging only, and kept in the packaging until they are ready to be installed. At time of receipt, please verify that the delivered product is in fact the product ordered. The product name, subname and serial number of each laminate are clearly marked on the outside of each packing box.

At the installation site, take care to keep modules and their electrical contacts clean and dry before installation. If connector cables are left in damp conditions then the contacts may corrode. Any module with corroded contacts should not be used. Yingli Solar PANDA BIFACIAL modules are heavy, and should be handled with care, so non-slip gloves are required when handling and installation. Please never use the junction box or cables as a grip. Do not exert mechanical stress on the cables. Never step on PANDA BIFACIAL modules or drop or place heavy objects on them. Be careful when placing PANDA BIFACIAL modules on hard surfaces, and secure them from falling. Broken glass can result in personal injury. PANDA BIFACIAL modules with broken glass cannot be repaired and must not be used. Broken or damaged PANDA BIFACIAL modules must be handled carefully and disposed of properly.

For unpacking frameless PANDA BIFACIAL modules from supplied packaging, firstly, remove the pallet lid after removing security straps, and then remove the carton, paper corner and foam rubber. Remove PANDA BIFACIAL modules one at a time by sliding them up the channel in the package with both hands (see Figure 3). You may need to secure the remaining PANDA BIFACIAL modules in the pallet packaging to prevent them from falling over.

Fire

Yingli Solar PANDA BIFACIAL Modules have a class A fire resistance rating in accordance with the IEC 61730-2 certification, while the materials of modules for class A please refer to the test report and CDF document. When PANDA BIFACIAL modules are mounted on the rooftops, the roof must have a fire resistant covering suitable for this application. PANDA BIFACIAL modules are electrical generating devices that may affect the fire safety of a building.

The use of improper installation methods and/or defective parts may result in the unexpected occurrence of an electrical arc during operation. In order to mitigate the risk of fire in this event, PANDA BIFACIAL modules should not be installed near flammable liquids, gases or locations with hazardous materials.

In the event of a fire, PANDA BIFACIAL modules may continue to produce a dangerous voltage, even if they have been disconnected from the inverter, partly or entirely destroyed, or the system wiring has been compromised or destroyed. In the event of fire, inform the fire crew about the particular hazards from the PV system, and stay away from all elements of the PV system during and after a fire until the necessary steps have been taken to make the PV system safe.

APPLICATION INFORMATION

Application Restrictions

Yingli Solar PANDA BIFACIAL modules must be mounted on appropriate structures, positioned on buildings, the ground, or other places suitable for PANDA BIFACIAL modules (e.g. carports, building facades or PV trackers). PANDA BIFACIAL modules must not be mounted on moving vehicles of any kind. Yingli Solar PANDA BIFACIAL modules must not be installed in locations where they could be submerged in water.

Yingli Solar PANDA BIFACIAL modules must not be sited in locations where aggressive substances, such as salt or salt-water, or any other type of corrosive agent, could affect the safety and/or performance of the PANDA BIFACIAL
modules.

Artificially concentrated light must not be directed on the front and rear surfaces of PANDA BIFACIAL modules.

For higher energy yield, please mind the gap between modules and the albedo of surroundings. The height from the bottom of the module to the ground should be more than 1 m, the gap between adjacent rows should be more than 50 mm, so the light could go through the gaps to the rear space behind the module. In order to eliminate the difference of rear space irradiance, modules from different rows must not be connected in series. The energy yield will be greater if the albedo of ground or roof is higher. For example, modules must not be mounted above black surroundings, such as smudgy lead-coated steel plate (albedo 0.08), dry asphalt (α0.09), while could be mounted above shining surroundings, such as grassland (α0.15), cement floor (0.25), lead-coated steel plate (0.35), snezhura (α0.55), fresh snow (0.82), aluminium alloy ground (0.85).

Design Recommendations

Yingli Solar recommends that PANDA BIFACIAL modules shall be mounted at a minimum tilt angle of 10 degrees to allow for proper self-cleaning from normal rain showers.

PANDA BIFACIAL modules are recommended to be installed at an optimized tilt angle to maximize the energy output. It is roughly equal to the latitude of the project site as a rule of thumb, facing the equator. But always to design based on local situations to find out the optimum one.

Partial or complete shading of a PANDA BIFACIAL module or modules can significantly reduce system performance. Yingli Solar recommends minimizing the amount of shade throughout the year to increase the amount of energy produced by the PANDA BIFACIAL modules.

Lightning protection is recommended for PANDA BIFACIAL systems that are to be installed in locations with high probability of lightning strikes. High system voltages could be induced in the event of an indirect lightning strike, which could cause damage to PANDA BIFACIAL system components. The open area of wire loops should be minimized (see Figure 5), in order to reduce the risk of lightning induced voltage surges.

Climate Conditions

PANDA BIFACIAL modules may be installed in the following conditions for more than 30 years. In addition to the required IEC certification, PANDA BIFACIAL modules have also been tested to verify resistance to ammonia fumes that may be present around barns sheltering cattle, as well as suitability for installation in areas of high snowfall.

ELectrical installation

Electrical Configuration

Under normal conditions, a PANDA BIFACIAL module is likely to experience conditions that produce more current and/or voltage than reported at Standard Test Conditions (Irradiance: 1000 W/m², 25°C cell temperature and AM 1.5). The short-circuit current (Isc) should be multiplied by a factor of 1.25 based on the highest ambient temperature recorded, and the open-circuit voltage (Voc) should be multiplied by a factor of up to 1.25 based on the lowest ambient temperature recorded for the installation location when determining component voltage ratings, conductor current ratings, fuse sizes, and size of controls connected to the PV output.

This maximum voltage should not be exceeded at any time and, as the voltage of the module increases, above datasheet values, at operating temperatures below 25°C, then these need to be taken into account when designing a PV system.

Voltages are additive when PANDA BIFACIAL modules are connected directly in series, and module currents are additive when PANDA BIFACIAL modules are connected directly in parallel (see Figure 6). PANDA BIFACIAL modules with different electrical characteristics must not be connected directly in series. The use of unsuitable third-party electronic devices connected to PANDA BIFACIAL modules may lead to mismatching, and must be installed according to the manufacturer’s specified instructions.

Cables and Wiring

Yingli Solar PANDA BIFACIAL modules are provided with two (2) stranded, sunlight resistant output cables that are terminated with PV connectors ready for higher energy yield, please mind the gap between modules and the albedo of surroundings. The height from the bottom of the module to the ground should be more than 1 m, the gap between adjacent rows should be more than 50 mm, so the light could go through the gaps to the rear space behind the module. In order to eliminate the difference of rear space irradiance, modules from different rows must not be connected in series. The energy yield will be greater if the albedo of ground or roof is higher. For example, modules must not be mounted above black surroundings, such as smudgy lead-coated steel plate (albedo 0.08), dry asphalt (α0.09), while could be mounted above shining surroundings, such as grassland (α0.15), cement floor (0.25), lead-coated steel plate (0.35), snezhura (α0.55), fresh snow (0.82), aluminium alloy ground (0.85).

Design Recommendations

Yingli Solar recommends that PANDA BIFACIAL modules shall be mounted at a minimum tilt angle of 10 degrees to allow for proper self-cleaning from normal rain showers.

PANDA BIFACIAL modules are recommended to be installed at an optimized tilt angle to maximize the energy output. It is roughly equal to the latitude of the project site as a rule of thumb, facing the equator. But always to design based on local situations to find out the optimum one.

Partial or complete shading of a PANDA BIFACIAL module or modules can significantly reduce system performance. Yingli Solar recommends minimizing the amount of shade throughout the year to increase the amount of energy produced by the PANDA BIFACIAL modules.

Lightning protection is recommended for PANDA BIFACIAL systems that are to be installed in locations with high probability of lightning strikes. High system voltages could be induced in the event of an indirect lightning strike, which could cause damage to PANDA BIFACIAL system components. The open area of wire loops should be minimized (see Figure 5), in order to reduce the risk of lightning induced voltage surges.

Climate Conditions

PANDA BIFACIAL modules may be installed in the following conditions for more than 30 years. In addition to the required IEC certification, PANDA BIFACIAL modules have also been tested to verify resistance to ammonia fumes that may be present around barns sheltering cattle, as well as suitability for installation in humid (coastal) areas and areas of high sand storms.

Table 1: Environment of installation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-20°C to +50°C</td>
</tr>
<tr>
<td>Humidity</td>
<td>< 85%RH</td>
</tr>
<tr>
<td>Altitude</td>
<td>≤ 2000m</td>
</tr>
</tbody>
</table>

Notes:
The modules have been evaluated by TÜV according to IEC61724 for a maximum positive design loading of 3600 Pa, and negative design loading 1600 Pa, with 1.5 times safety factor.
The mechanical load bearing is dependent upon the mounting methods used and failure to follow the instructions in this manual may result in different capabilities to withstand snow and wind loads.
The system installer must ensure that the installation methods used meet these requirements and any local codes and regulations.

*Isc refers to Isc under BSTC condition in nameplate or module supplement of installation and user manual.
for most installations. The positive (+) terminal has a female connector while the negative (-) terminal has a male connector. The module wiring is intended for series connections (i.e. female (+) to male (-) interconnections, as shown in Figure 7), but can also be used to connect suitable third-party electrical devices that may have alternative wiring configurations so long as the manufacturer’s instructions are followed.

Use field wiring with suitable cross-sectional areas that are approved for use at the maximum short-circuit current of the PANDA BIFACIAL module. Yingli Solar recommends to use only sunlight resistant waterproof cables qualified for direct current (DC) wiring in PV systems. The minimum wire size should be 4 mm².

Table 2: Required minimum field wiring specifications

<table>
<thead>
<tr>
<th>Testing standard</th>
<th>Wire size</th>
<th>Temperature rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 50618</td>
<td>4 mm²</td>
<td>-40 ºC to +90 ºC</td>
</tr>
</tbody>
</table>

Cables should be fixed to the mounting structure in such a way that mechanical damage of the cable and/or the module is avoided. Do not apply stress to the cables, the minimum cable bending radius should be 40 mm. For fixing, use appropriate means, such as sunlight resistant cable ties and/or wire management clips specifically designed to attach to the mounting structure. While the cables are sunlight resistant and waterproof, where possible, avoid direct sunlight exposure and water immersion of the cables.

Connectors

Keep connectors dry and clean, and ensure that connector caps are hand tight before connecting the modules. Do not attempt making an electrical connection with wet, soiled or otherwise faulty connectors. Avoid sunlight exposure and water immersion of the connectors. Avoid connectors resting on the ground or roof surface.

Faulty connection can result in arcs and electrical shock. Check that all electrical connections are securely fastened. Make sure that all locking connectors are fully engaged and locked.

Modules must not be interconnected using connectors from different manufacturers and/or of different types. If modules having such different connectors need to be interconnected, a qualified professional may replace connectors according to the manufacturers’ specified instructions such that an interconnection can be made with connectors from the same manufacturer and the same type.

Bypass Diodes

The junction boxes used with Yingli Solar PANDA BIFACIAL modules contain bypass diodes wired in parallel with the PV cell strings. In the case of partial shading, the diodes bypass the current generated by the non-shaded cells, shunting the current generated by the shaded cells. Bypass diodes divert current from the cell strings in the event of partial shading. See Figure 8 for a diagram showing how the cell strings are electrically connected with the diodes. In the event of a known or suspected diode failure, installers or maintenance providers should contact the company which the PANDA BIFACIAL modules were purchased from. Never attempts to open the junction box of a Yingli Solar PANDA BIFACIAL module yourself.

Equipment Grounding

The frame of the PV module, as well as any exposed non-current-carrying metal parts of fixed equipment that are able to become energized by the PV system, must be connected to the equipment grounding conductor (EGC) in order to prevent electrical shock. Even when applicable regulations, code requirements and standards do not require safety-related grounding, Yingli Solar recommends grounding all PV module frames in order to ensure the voltage between electrically conductive equipment and earth ground is zero in all circumstances.

Proper equipment grounding is achieved by bonding all exposed non-current-carrying metal equipment continuously to one another using an appropriately sized EGC or racking system that can be used for integrated grounding (see Option B in Grounding Methods below).

Yingli Solar PV modules employ a coated aluminum frame for corrosion resistance. In order to properly ground the module frame, the coating must be penetrated.

The potential for corrosion due to the electrochemical action between dissimilar metals in contact is minimized if the electrochemical voltage potential between the dissimilar metals is low. The grounding method must not result in the direct contact of dissimilar metals with the aluminum frame of the PV module that will result in galvanic corrosion. An addendum to UL Standard 1703 “Flat Plate Photovoltaic Modules and Panels” recommends metal combinations not exceed an electrochemical potential difference of 0.5 Volts.

The frames have pre-drilled holes marked with a grounding sign, as illustrated in Figure 9. These holes should be used for grounding purposes and must not be used for mounting the PV modules. Do not drill additional holes into the frames.

The following grounding methods are available:

Option A: Screw assembly (see Figure 10)
- A grounding screw assembly must be attached to a designated grounding hole location using only stainless steel hardware. Insert a M5 stainless steel screw firstly through the stainless steel cup washer, and then through the grounding hole.
- Loosely engage a stainless steel backing nut and toothed lock washer to the screw.
- Bend the EGC into an omega (Ω) shape to tightly fit between the partially installed screw head and cup washer. The EGC shall be exclusively in contact with stainless steel.
- Tighten the screw to 4.0 N·m torque. The toothed lock washer should be visibly engaged to the frame.
- Route the appropriately sized EGC in such a way as to avoid contact with the
aluminum module frame.

Option B: Racking manufacturer integrated grounding methods

Yingli Solar PV modules can be grounded by bonding PV modules to a grounded racking system. Integrated grounding methods must be certified for grounding PV modules and must be installed in accordance with the specified instructions of their respective manufacturers.

Option C: Additional third-party grounding devices

Yingli Solar PV modules can be grounded using third-party grounding devices so long as they are certified for grounding PV modules and the devices are installed according to the manufacturer's specified instructions.

MECHANICAL INSTALLATION

Yingli Solar PANDA BIFACIAL Modules have been certified for a maximum positive design loading of 3600 Pa, and negative design loading 1600 Pa, with 1.5 times safety factor.

Never steps on the module or put heavy objects on it to avoid microcracks of the cells.

Mounting structures and other mechanical parts must be designed and approved to withstand the design wind and snow loads apply for a particular site. Yingli Solar PANDA BIFACIAL modules must not be subjected to forces from the substructure, including forces caused by thermal expansion.

In order to maintain the fire class rating, the distance between the PANDA BIFACIAL module back surface and the roof surface shall be at least 100 mm. This spacing also allows air flow to cool the PANDA BIFACIAL module. Install PANDA BIFACIAL modules with a minimum spacing of 20 mm between neighboring modules to allow for thermal expansion.

The fire rating of a PANDA BIFACIAL module is valid only when mounted in the manner specified in the mechanical mounting instructions of this installation manual.

The installation shall follow the instructions below. If the installation method is different from this manual, please contact Yingli engineers for approval. Please find the installation drawings in the "Module Supplement".

Frameless PANDA BIFACIAL Module Mounting Mode

Clamps selection

The manufacture of the clamp is responsible for providing an appropriate clamp and installation manual. The clamps length shall not be less than 120 mm, and the installation depth shall be greater than 12 mm. In order to protect the glass, clamps shall have two protective layer of EPDM rubber, and the thickness of each layer of the rubber shall not be less than 3 mm. Minimum dimensions are shown in figure 11.

Bill of materia
Framed PANDA BIFACIAL Module Mounting Mode

- **Clamps selection**
 The manufacture of the clamp is responsible for providing an appropriate clamp and installation manual. Clamps length shall not be less than 50 mm (see Figure 16).

![Figure 16: Detail of a clamp](image)

- **Bill of material**

<table>
<thead>
<tr>
<th>Name</th>
<th>Dimension (mm)</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clamp</td>
<td>Width * Height * Wall thickness 40×10×3.0</td>
<td>Aluminium alloy 6063 T5</td>
</tr>
<tr>
<td>Beam</td>
<td>Width * Height * Wall thickness 41×41×2.0</td>
<td>Galvanized steel</td>
</tr>
<tr>
<td>Nut</td>
<td>Suitable for M8 screw</td>
<td>Plastic SUS 304</td>
</tr>
<tr>
<td>Grounding wire</td>
<td>Length * Sectional area 150×4.0 mm²</td>
<td>Copper</td>
</tr>
<tr>
<td>Inside hexagonal bolt</td>
<td>M8 screw Spring washer Flat washer</td>
<td>SUS 304</td>
</tr>
</tbody>
</table>

![Figure 17: Installation accessories](image)

- **Mounting method**

 Step 1:
 Place the clamps on the support beams at correct positions according to the module size. The exact values can be found in the “Module Supplement”.

 Step 2:
 Place the inside hexagonal bolt into the clamp and screw it partly in the nut. Then insert the two into the beam.

 ![Figure 18: Primary fixation clamp](image)

 Step 3:
 Place the modules and tighten the bolts (It's recommended to fix by M8 screws and tighten the screw with 16 N•m - 20 N•m torque, see Figure 19).

 ![Figure 19: Tighten clamp](image)

 Step 4:
 Connect the frames by grounding wires (It's recommended to fix by M5 screw and tighten the screw with 4 N•m torque), then make it earthing reliably.

 Successively fasten clamps and connect framed PANDA BIFACIAL modules (see Figure 20).

 ![Figure 20: Framed PANDA BIFACIAL array](image)

MAINTENANCE

General
Yingli Solar recommends that PV systems be periodically inspected by the installer or other qualified person.

The purpose of the PV system inspection is to ensure that all system components are functioning properly. At a minimum, this inspection should confirm the following:

- All cables and connector attachments are undamaged and properly secured
- No sharp objects are in contact with the PANDA BIFACIAL module surfaces
- PANDA BIFACIAL modules are not shaded by unwanted obstacles and/or foreign material
- Mounting and grounding components are tightly secured with no corrosion

Defects should be addressed immediately.

Cleaning
Over time, dirt and dust can accumulate on the glass surface of the module, reducing its power output. Yingli Solar recommends periodic cleaning of PANDA BIFACIAL modules to ensure maximum power output, especially in regions with low precipitation.

In order to reduce the potential for electrical and thermal shock, Yingli Solar recommends cleaning PANDA BIFACIAL modules during early morning or late afternoon hours when solar radiation is low and the modules are cooler, especially in regions with hotter temperatures.

Never attempts to clean a PANDA BIFACIAL module with broken glass or other signs of exposed wiring, as this presents a shock hazard.

Clean the glass surface of the PANDA BIFACIAL modules with a soft brush using soft, clean water with a recommended pressure less than 690 kPa, which is typical of most municipal water systems. Water with high mineral content may leave deposits on the glass surface and is not recommended.
Yingli Solar PANDA BIFACIAL modules may contain a hydrophilic antireflective coating on the glass surface to enhance power output and reduce dirt and dust buildup. In order to avoid module damage, do not clean PANDA BIFACIAL modules with a power washer or pressure washer. Do not use steam or corrosive chemicals to facilitate the cleaning of modules. Do not use aggressive tools or abrasive materials that could scratch or damage the glass surface. Failure to comply with these requirements may adversely affect the PANDA BIFACIAL module performance.

Yingli Solar PANDA BIFACIAL modules are designed to withstand high snow loads. However, if removing snow is desired to enhance production, use a brush to gently remove snow. Do not try to remove frozen snow or ice from PANDA BIFACIAL modules.

DECOMMISSIONING

The dismantling of PV systems must be performed with the same care and safety precautions used during the initial installation. The PV system can generate hazardous voltage even after the system has been disconnected. Follow safety regulations for working with live electrical equipment.
ELECTRICAL CHARACTERISTICS

Nameplate ratings are average values. Note that not necessarily all power classes are available for all module series given in the first column of Table 3. Please refer to Table 1 to see which power classes actually exist for which module series.

Table 3: Electrical characteristics

<table>
<thead>
<tr>
<th>Series</th>
<th>Module</th>
<th>P_max</th>
<th>V_mpp</th>
<th>I_mpp</th>
<th>V_oc</th>
<th>I_sc</th>
<th>Max. system voltage</th>
<th>Max. series fuse rating</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>[W]</td>
<td>[V]</td>
<td>[A]</td>
<td>[V]</td>
<td>[A]</td>
<td>[V]</td>
<td>[A]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STC</td>
<td>BSTC</td>
<td>STC</td>
<td>BSTC</td>
<td>STC</td>
<td>STC</td>
<td>BSTC</td>
</tr>
<tr>
<td>PANDA BIFACIAL 60CL/F</td>
<td>YL310CG2530L/F-1</td>
<td>280</td>
<td>310</td>
<td>31.7</td>
<td>31.7</td>
<td>8.83</td>
<td>9.80</td>
<td>38.8</td>
</tr>
<tr>
<td></td>
<td>YL315CG2530L/F-1</td>
<td>285</td>
<td>315</td>
<td>32.0</td>
<td>32.0</td>
<td>8.90</td>
<td>9.88</td>
<td>39.0</td>
</tr>
<tr>
<td></td>
<td>YL320CG2530L/F-1</td>
<td>290</td>
<td>320</td>
<td>32.3</td>
<td>32.3</td>
<td>8.98</td>
<td>9.97</td>
<td>39.2</td>
</tr>
<tr>
<td>PANDA BIFACIAL 72CL/F</td>
<td>YL375CG2536L/F-1</td>
<td>340</td>
<td>375</td>
<td>37.1</td>
<td>37.1</td>
<td>9.18</td>
<td>10.19</td>
<td>46.0</td>
</tr>
<tr>
<td></td>
<td>YL380CG2536L/F-1</td>
<td>345</td>
<td>380</td>
<td>37.4</td>
<td>37.4</td>
<td>9.23</td>
<td>10.24</td>
<td>46.3</td>
</tr>
<tr>
<td></td>
<td>YL385CG2536L/F-1</td>
<td>350</td>
<td>385</td>
<td>37.7</td>
<td>37.7</td>
<td>9.28</td>
<td>10.30</td>
<td>46.5</td>
</tr>
<tr>
<td>PANDA BIFACIAL 144HCL/F</td>
<td>YL340CG2536L/F-2 1/2</td>
<td>340</td>
<td>/</td>
<td>38.5</td>
<td>/</td>
<td>8.85</td>
<td>/</td>
<td>46.0</td>
</tr>
<tr>
<td></td>
<td>YL345CG2536L/F-2 1/2</td>
<td>345</td>
<td>/</td>
<td>38.7</td>
<td>/</td>
<td>8.92</td>
<td>/</td>
<td>46.3</td>
</tr>
<tr>
<td></td>
<td>YL355CG2536L/F-2 1/2</td>
<td>355</td>
<td>/</td>
<td>39.5</td>
<td>/</td>
<td>8.99</td>
<td>/</td>
<td>47.1</td>
</tr>
<tr>
<td></td>
<td>YL360CG2536L/F-2 1/2</td>
<td>360</td>
<td>/</td>
<td>39.8</td>
<td>/</td>
<td>9.05</td>
<td>/</td>
<td>47.2</td>
</tr>
</tbody>
</table>

Table 4: Other characteristics

<table>
<thead>
<tr>
<th>Tolerance</th>
<th>P_max</th>
</tr>
</thead>
<tbody>
<tr>
<td>±3%</td>
<td>0-5 W</td>
</tr>
<tr>
<td>Temperature coefficient (%/°C)</td>
<td>0.04</td>
</tr>
</tbody>
</table>

This supplement refers to modules of the following types:

Table 1: Module types

<table>
<thead>
<tr>
<th>FAMILY</th>
<th>PANDA BIFACIAL 60CL/F</th>
<th>PANDA BIFACIAL 72CL/F</th>
<th>PANDA BIFACIAL 144HCL/F</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YL310CG2530L/F-1</td>
<td>YL375CG2536L/F-1</td>
<td>YL340CG2536L/F-2 1/2</td>
<td></td>
</tr>
<tr>
<td>YL315CG2530L/F-1</td>
<td>YL380CG2536L/F-1</td>
<td>YL345CG2536L/F-2 1/2</td>
<td></td>
</tr>
<tr>
<td>YL320CG2530L/F-1</td>
<td>YL385CG2536L/F-1</td>
<td>YL350CG2536L/F-2 1/2</td>
<td></td>
</tr>
<tr>
<td>YL355CG2536L/F-2 1/2</td>
<td>YL360CG2536L/F-2 1/2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CLAMP INSTALLATION DRAWINGS OF PANDA BIFACIAL MODULES

UNIT: mm

PANDA BIFACIAL 60CL

PANDA BIFACIAL 60CF

PANDA BIFACIAL 72CL

PANDA BIFACIAL 72CF

Drainage holes
Grounding holes
Mounting area
CLAMP INSTALLATION DRAWINGS OF PANDA BIFACIAL MODULES

UNIT: mm

<table>
<thead>
<tr>
<th>PANDA BIFACIAL 144HCL</th>
<th>PANDA BIFACIAL 144HCF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Drainage holes
- Grounding holes
- Mounting area